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MODE SHAPES DURING ASYNCHRONOUS
MOTION AND NON-PROPORTIONALITY
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When synchronous motion does not exist, it is not possible to draw the classical
mode shapes. In this paper, a representative shape of motion during free vibration
of a non-classically damped system is sought. It is noted that this shape provides
an optimal representation of free motion. Interpretations of the optimality thus
introduced are presented. Their connection with non-proportionality of damping
and of gyroscopy is brought out. In the spirit of the optimality presented in this
paper, two indices of non-proportionality are defined. Properties of these indices
are discussed. Comparison with other indices of non-proportionality available in
the literature is presented. Illustrative examples are given.
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1. INTRODUCTION

A dynamical system, in general, possesses complex eigenvectors. The free vibratory
motion is then asynchronous. There are, however, three notable exceptions to this
general case: (i) when the system is undamped (see references [1, 2] for example),
(ii) when the system is damped, but damping is classical [3–5], and (iii) when the
system possesses gyroscopy but the matrices involved satisfy conditions very
similar to those of (ii) (Liu and Wilson [6]). In all these cases, synchronous motion
is possible only for certain combinations of initial conditions. Very few authors
draw mode shapes for damped systems, since classical normal modes do not exist
for a general case of damping (the corresponding eigenvectors are complex).
Usefulness of complex eigenvectors for a direct interpretation is limited because
the ratio of the components of the vector of generalised displacements
changes during motion. In this paper, a graphical representation of a complex
mode is sought.

Luo [7] presents a graphical method of depicting free vibration of a damped
mode by using a number of spirals, where each spiral represents motion of a
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co-ordinate on the complex plane. Although this is a complete representation, in
the opinion of the present author, these spirals elucidate little about the deformed
‘‘shape’’ of the system involved during free vibration. There is thus limited
practical value of the diagrams presented in reference [7]. A second treatment,
presented by Newland [2, 8], utilizes a collection of successive configurations
during motion at various instants of time over one period. This method is
intuitively more appealing, since the purpose of examining a mode shape is often
to learn about the relative magnitudes of motion of various generalised
co-ordinates. However, it requires calculation of many such ‘‘snap-shots’’ (ideally
infinitely many, to preserve complete information) in order to describe motion of
a given damped mode. The present work is inspired by this approach; the
departure is an attempt to arrive at a single diagram which can be used as a
representative mode shape when an eigenvector is complex. Needless to say, there
can be no instant of time during motion at which the motion can be regarded as
truly synchronous. Therefore, loss of information is inevitable if one is to draw
a single deformed configuration as a representative of a complex mode. The
author’s concern here is to look for an instant of time for which different
co-ordinates can be regarded as executing motion which is as close to being
in-phase or out-of-phase motion as possible.

2. THE EIGENVALUE PROBLEM FOR GENERAL DYNAMICAL SYSTEMS

The equations of motion for a damped gyroscopic system in the absence of
circulatory forces and external forcing are given by (see for example [1])

Mẍ+(C+G)ẋ+Kx= 0. (1)

Here M stands for the inertia matrix, C for the damping matrix, G for the
gyroscopic matrix, K for the stiffness matrix, and x for the vector of generalised
co-ordinates. The total number of degrees of freedom is n. Matrices M and C are
assumed to be positive definite while the stiffness matrix K is assumed to be
positive semi-definite. The gyroscopic matrix G is skew-symmetric. Defining the
state vector z as z=[ẋT=xT]T, equation (1) can be recast as

ż=Az, (2)

where

A=$−M−1(G+C)
I

−M−1K
0 %.

The corresponding eigenvalue problem is

Az= lz, (3)

where z represents the 2n-dimensional eigenvector and l the eigenvalue. From here
onwards, a vector of the kind z will be interpreted as the state-vector (as in
equation (2)) or the eigenvector in the state-space (as in equation (3)) depending
on the context. Similarly, x represents the vector of generalised co-ordinates (as
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in equation (1)) as well as the last n elements of the eigenvector z. Since A is a
real but an asymmetric matrix, its eigenvalues (and eigenvectors) are, in general,
complex. The real and imaginery parts of the rth eigenvalue can be separated as

lr =−ar +jvr , (4)

where ar is the decay rate of the mode in question, vr is the corresponding damped
natural frequency (see reference [2]) and j=z−1. The case of real eigenvalues
is omitted from the discussion, since they correspond to non-oscillatory
(overdamped) motion and are essentially synchronous.

2.1.     

Methods based on the trajectories of the co-ordinates in the complex plane and
those based on the snap-shots of free vibratory motion were described in section 1.
A few other possible alternatives of representing a complex eigenvector graphically
are discussed next using an example.

Since the ratio of generalised displacements corresponding to different
co-ordinates remains the same during synchronous motion, one can think of nodes
in a classical normal mode. In case of a system in which classical modes do not
exist, there is no such stationary point and the point having zero displacement
fluctuates during motion. Consider an eigenvector z=[lxT=xT]T of the eigenvalue
problem (3) where x=[1−0·5j, −0·75+0·5j, 1−0·5j]T and l=−0·2+ j. A
possible representation of the eigenvector (assuming its origin is a three-degree-of-
freedom system constrained at the two ends) is shown in Figure 1. There are two
‘‘mode shapes’’ in this case: the real mode and the imaginary mode (Figure 1(a)).
Another alternative is to plot magnitudes and phases of the co-ordinates involved.
Plotting only the real part or only the magnitude will be an incomplete
representation.

Figure 1. Three representations of complex modes by means of: (a) real and imaginary parts, (b)
displacements and velocities and (c) displacements and velocities superposed on a single diagram.
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Recalling that a general dynamical system can be decoupled in the state space,
it can be inferred that a damped mode demands a plot in the state-space rather
than that in the configuration space. Hence a plot which shows both displacements
as well as velocities carries complete information. This is chosen to be represented
by plotting displacements R(x) against the co-ordinates and displaying it along
with the corresponding velocities R(lx) required in order to observe motion in a
damped mode. Here R(·) represents the real part of (·). Figure 1(b) is such a
representation. Yet another alternative is to plot displacements and superpose on
the same figure the corresponding velocities by using arrows (see Figure 1(c)). Had
the system been classically damped, the length of the arrows would then have been
proportional to the displacements at the corresponding co-ordinates and the
information carried by the velocity arrows would have been redundant. The phase
information between various co-ordinates, which is different for different
co-ordinates, is possessed by the velocities (i.e., those with R(lx)). To the best of
the author’s knowledge, this simple graphical representation of a complex mode
which contains complete information by combining displacements and velocities
during motion is unavailable in the published literature. A more involved method
of obtaining an optimal mode shape for a non-classically damped mode is
discussed in the next section.

3. THE OPTIMAL MODE SHAPE

In this paper, an instant of time during asynchronous motion is identified such
that the corresponding state can be considered to be as close to being synchronous
as possible. Before proceeding on to the idea of synchroneity the following must
be made clear: since all the co-ordinates of a system execute motion with the same
frequency, namely the damped natural frequency, the phase difference between
any two co-ordinates remains constant for all instants of time. From this point
of view, when synchroneity is measured by the phase between two sinusoids, every
time instant must be treated on equal footing. Therefore, so far as relative phase
between various co-ordinates is the only consideration, configuration at every
point of time must be regarded as equally synchronous or asynchronous.

Let one take another look at this situation. One first asks the following question:
‘‘Is there a configuration which deviates least from all other configurations during
the course of motion?’’. One can find such a configuration in more than one way
depending on the definition of ‘‘least deviation’’. This configuration can then be
regarded as the representative snap-shot and could then be used as the ‘‘optimal
mode shape’’. An elegant answer is provided by approaching the problem
geometrically.

Consider the phasor diagram of Figure 2. Each element of a typical complex
eigenvector is plotted using an arrow on this diagram. The deformed shape during
motion is obtained by plotting the real part for each arrow against the generalised
co-ordinates. The whole diagram rotates with an angular velocity equal to the
imaginary part of the eigenvalue corresponding to this eigenvector. Let the kth
eigenvector be zk . The elements of this eigenvector are given by [lkxT

k =xT
k ]T, where

lk is the kth eigenvalue of the eigenvalue problem (3). If the motion were
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Figure 2. Representation of an eigenvector on the complex plane. Projections of the ith
component xi along and orthogonal to an arbitrary line L are denoted by pi and hi respectively.

synchronous, all the phasors would collapse to a line. If a mode is ‘‘nearly
synchronous’’ then the phasors are expected to be spread in a small sector on the
complex plane (which is a perturbation on synchronous motion) and the change
in deformed configuration during motion is expected to be small. This suggests
the following geometrical question: ‘‘Is there a line through the origin on Figure 2
which can be regarded as closest (in a given sense) to all the phasors?’’ Projections
on this mean line could then be used to reconstruct the corresponding
configuration. A reasonable solution is the line obtained by minimising the sum
of squares of orthogonal components (shown for the ith phasor by hi). This is
equivalent to maximising the sum of squares of projections. The projections along
L are denoted by pi. Consider the vector of the last n components of the kth
eigenvector denoted by xk . In what follows, the subscript has been dropped for
convenience. Components of this vector will be denoted subsequently by an index
appearing in the superscript. The sum of squares of projections along and
orthogonal to an arbitrary line L through the origin (Figure 2) is given by

s
n

i=1

(pi)2 + s
n

i=1

(hi)2 = xHx,

which is a constant irrespective of the choice of the line L. Here (·)H represents
the conjugate transpose of (·) and where x is the vector of the last n elements of
the eigenvector in question. The line through the origin on the complex plane
which maximises the sum of the squares of the projection onto it, will be referred
to as Lopt .

It is now claimed that the mode shape obtained by projecting phasors onto Lopt

provides the optimal mode shape. The basis is that the motion is synchronous (and
correspondingly, a classical normal mode exists) if the phasors are aligned. Mode
shapes obtained in this way can be regarded as the optimally synchronous
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approximation to an asynchronous motion since the component of a phasor
orthogonal to the line Lopt can be considered as the asynchronous component of
the phasor in question. The configurations at successive stages of motion can be
obtained by taking the real part of these phasors while they rotate. Nodes can be
observed in the animations obtained in this way, since all the co-ordinates are
necessarily in-phase or out-of-phase. The configuration obtained by plotting the
projections (against the generalised co-ordinates) onto Lopt denotes a representative
(or average) configuration of motion of the damped natural mode in question. This
configuration is observed twice in one cycle.

Since scaling by a complex scalar is equivalent to scaling the magnitude of
phasors as well as rotating them, the optimal mode shapes can be obtained by
suitably scaling the original phasors and plotting their real parts. This gives us a
further interpretation of an optimally synchronous mode: it is a mode shape
obtained by appropriately scaling the eigenvectors (using a complex scaling factor)
such that the sum of the squares of the imaginary parts is minimal.

3.1.         

The projection of the ith component of the phasor x along the ray exp(ju) is
given by

pi = =xi= cos (ui − u) (5)

and the component orthogonal to it is given by

hi = ei = =xi= sin (ui − u), (6)

where ui is the phase of the phasor xi and u is phase of the ray. Hence the total
squared projection P and the total squared ‘‘error’’ E are given by

P= s
n

i=1

(pi)2 and E= s
n

i=1

(ei)2 = s
n

i=1

(hi)2. (7)

Applying the condition that 1P/1u=0 for an extremum of P, one obtains

tan (2u)=S/C, (8)

where the numerator and the denominator are given by

S= s
n

i=1

=xi=2 sin 2ui and C= s
n

i=1

=xi=2 cos 2ui. (9)

Equation (8) has four general solutions for u in the range 0E uE 2p as u= u�,
u�+ p, u�2 p/2, where u�=(1/2) tan−1 (S/C). Note that the first and the second;
and the third and the fourth solutions represent two lines through the origin which
are perpendicular to each other and they correspond to an extremum of P.
The condition for a maximum is 12P/1u2 Q 0 which can be simplified to

s
n

i=1

=xi=2 cos 2(ui − u)q 0. (10)
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It can be checked that out of the four solutions for u mentioned earlier, there are
two which satisfy the condition for a maximum and two for a minimum.
Therefore, amongst all the successive stages of free damped motion, there exists
a configuration which can be considered as the one which resembles the overall
motion least (in the least square sense defined earlier). We also realise that the most
synchronous and the least synchronous motions are separated by a phase p/2.

4. EXAMPLES AND DISCUSSIONS

The following examples illustrate the observations made in the earlier sections.
Example 1. This numerical example is based on a seven degree-of-freedom

lumped parameter model of a chimney on a resilient foundation and is discussed
at length by Newland [2]. The model consists of seven rigid bars of length l each
having mass equal to m concentrated at the centre of each of the bars and
interconnected by torsional springs of stiffness k at the joints, except at the base
where the torsional stiffness is K. A sketch can be found in reference [2] or [8].
The mass matrix is given by

0 0 0 0 0 1 1K L
G G0 0 0 0 1 4 3
G G0 0 0 1 4 8 5G G

M=m1 0 0 1 4 8 12 7G G
G G0 1 4 8 12 16 9G G

1 4 8 12 16 20 11G G
k l4 8 12 16 20 24 13

and the stiffness matrix is given by [2]

K= k1

0 0 0 0 k (−2k+1) (k−1)K L
G G0 0 0 k (−2k+3) (k−2) −1
G G0 0 k (−2k+5) (k−2) −2 −1G G

0 k (−2k+7) (k−2) −2 −2 −1 ,G G
G Gk (−2k+9) (k−2) −2 −2 −2 −1
G G

(−2k+11) (k−2) −2 −2 −2 −2 −1G G
k lk1 −2 −2 −2 −2 −2 −2 −1

where m1 =ml/4 and k1 =mg/2, k=2k/mgl, k1 =2K/mgl; and where g is the
acceleration due to gravity. Note that both of these matrices are asymmetric but
they can be symmetrised after rearranging the rows and the columns. Numerical
values for this example are taken from Newland [2] as: l=6 m, m=3×103 kg,
k=K=109 Nm/rad and c=5·85×107 Nms/rad. Entries on the damping C
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Figure 3. Successive stages of motion plotted at an interval of T/8 (bottom portion of the figure);
T being the period of free vibration and graphs of the total squared projection (top portion of the
figure).

matrix are given by Cij =0 for all i, j except for C71 = c/l, c being the dashpot
constant of the foundation.

Successive shapes of damped free motion of the second damped mode are shown
in Figure 3 (the set of sketches at the bottom of the figure) drawn at a stroboscopic
time interval of T/8 where T is the period. In each case, the solid line represents
the configuration observed during damped motion with increasingly diminishing
amplitude of motion. Corresponding dotted lines are scaled such that the
maximum value of displacement in each figure is +1. This way the solid lines
describe the actual configurations during damped motion whereas the dotted lines
represent the corresponding (different!) ‘‘shapes’’ during the motion. It may be
recalled that the shape of motion stays unchanged during a synchronous motion.
In the same figure, the plot of the sum of squares of projections of all the phasors
corresponding to the second damped mode is shown as a function of time (see the
continuous graph drawn above the snap-shots of deformation shapes). Peaks of
the curve marked I correspond to the time instant at which the ‘‘optimal mode
shape’’ is observed during motion. In a similar manner, troughs relate to the ‘‘least
synchronous’’ modes discussed previously. The time instants of peaks (labelled B
and B') and troughs (labelled A and A') have been indicated using vertical arrows
in each case. The second curve on the same graph marked II is calculated after
accounting for the diminishing length of the phasors due to damping. Points on
curve I have been calculated by rotating the original phasors without letting their
lengths change. The peaks and the troughs of curve I and curve II do not, in
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general, occur at the same instant of time. This analysis which seeks the optimal
deformed configuration is based on curve I since this curve has peaks and troughs
occurring at fixed time intervals.

Shapes drawn using the dotted lines in Figure 3 repeat with a period of T/2 and
not T and they represent out-of-phase motion. The frequency of curve I is double
the damped natural frequency. The reason is that the frequency of the sum of
squares of projection on the real line is double that of the rate of rotation of the
phasors. Therefore, referring to Figure 3, the dotted configuration of the first and
the fifth positions are the same, those of the second and the sixth positions are
the same and so on. This mens that while drawing successive positions during
motion, it is adequate to draw snap-shots of motion up to only half the period
of damped oscillation. This fact does not seem to have been recognised elsewhere.

The calculated optimal mode shapes are presented in Figure 4(a) (left to right
as the damped natural frequency increases). The corresponding least synchronous
modes are shown in Figure 4(b). To examine if there is any resemblance of the
optimal damped modes with the undamped modes, damping has been set to zero
and the corresponding undamped modes have been plotted in Figure 4(c).
Comparing Figures 4(a) and 4(c), it is observed that the optimal modes perform
fairly satisfactorily in representing the shape of motion in situations where the
synchronous shapes do not exist.

In this example, the number of undamped natural frequencies (and hence the
corresponding number of natural modes) is seven whereas there are only six
damped oscillatory modes. The reason is that the number of complex conjugate
pairs of eigenvalues for the damped eigenvalue problem is not the same as the
number of undamped natural frequencies. Therefore, it is not possible to establish
a one to one correspondence between the undamped modes and the damped ones
in this case because when damping is included, non-oscillatory (or overdamped)
modes result. Due to the non-oscillatory character of a damped mode, the phasor

Figure 4. Mode shapes for the chimney problem of Example 1: (a) optimally synchronous
oscillatory modes for the damped modes, (b) least synchronous damped oscillatory modes and (c)
normal modes for the corresponding undamped problems.
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representation has no meaning. Since overdamped modes are associated with real
eigenvectors, they can be treated as synchronous. Therefore, the overdamped
modes have been omitted from the calculations. Comparing Figures 4(a) and 4(c),
one can observe that the first and second optimal modes of Figure 4(a) resemble
the first and the second modes of Figure 4(c) whereas the fifth and the sixth
optimal modes of Figure 4(a) resemble the sixth and the seventh modes of
Figure 4(c). The case of the remaining intermediate modes is less clear. The third
and the fourth optimal modes represent the dominant motions corresponding
approximately to the undamped motions in the third, the fourth and the fifth
undamped natural modes. Returning to the deformed shapes of Figure 4(b), one
notices that for all the modes, the co-ordinate of the lowest unconstrained point
has a large amplitude, a fact not confirmed by the sketches of undamped modes.
This is expected since the shapes drawn in Figure 4(b) are supposed to be the least
dominant ones amongst those that are realised in every cycle during motion, and
hence not representative.

5. INDICES OF NON-PROPORTIONALITY

When damping is non-classical, various authors have formulated indices in
order to quantify the extent of non-proportionality. Prater and Singh [9] proposed
indices (a) based on the area of the modal polygons, (b) in terms of modal phase
differences, (c) in terms of relative magnitude of coupling terms in the normal
co-ordinate damping matrix and finally (d) those based on response. Subsequently,
Nair and Singh [10] proposed a further two indices of non-proportionality on the
basis of constraint matrices and the Nyquist plot. Bellos and Inman [11] defined
a non-proportionality index in terms of the driving frequency and elements of the
modal damping matrix. A non-proportionality index based on the error that is
introduced by ignoring coupling terms of the modal damping matrix was proposed
by Bhaskar [12, 13]. With the exception of [9] most of these indices work directly
with the system matrices and not the eigenvectors. Non-proportionality is also
closely related to the concept of modal coupling. In this reagard, two very similar
papers by Park et al. [14, 15] are worth mentioning.

From the discussions in the previous sections it is clear that the eigenvectors of
a classically damped system when represented on the complex plane collapse to
a straight line passing through the origin. Guided by this, Prater and Singh [9]
developed an index of non-proportionality based on the areas of ‘‘modal
polygons’’. Before going into the details, it is proper to mention two things: firstly,
there can be no unique definition of the index of non-proportionality. Secondly,
all the indices must possess certain desired behaviour in the limiting cases of
non-proportionality.

Prater and Singh [9] obtained a closed polygon on the complex plane by joining
vertices of the tips of the vectors of the individual components of an eigenvector.
The area of this polygon (called the modal polygon) when normalised with respect
to the maximum modal area (area of a regular polygon) is defined in reference [9]
as a non-proportionality index. It was rightly recognised there that if one or more
displacement(s) is(are) out-of-phase, then the index proposed there will be an
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Figure 5. An example of an eigenvector plotted on the complex plane which shows that the
definition of a ‘‘modal polygon’’ is ambiguous.

inconsistent index, since the modal polygon would have a very large area despite
the system being only slightly non-proportional. A remedy was proposed to
overcome this problem by rotating each of the ‘‘out-of-phase’’ displacements
through p and then reconstructing the modal polygon [9]. This solution is
not always satisfactory. There are other problems too with this index which are
discussed next:

(1) The definition of modal polygons presented in reference [9] is not unique.
Consider a hypothetical situation in Figure 5 which represents an eigenvector of
a six-degree-of-freedom system. In this case, it is not clear if one should construct
a modal polygon by joining points 1–2–3–4–5–6–1, in that order, (the solid line)
or by joining points 1–2–6–3–4–5–1 (the dotted line) or by 1–2–3–6–4–5–1 etc. The
other possibility is to join the points in the order in which the generalised
co-ordinates appear (the problem is that the lines cross each other in certain
situations). Yet another possibility is to take the convex hull of all the points to
define modal polygons. In each case, the non-proportionality index as defined in
[9] has a different value! It is clear that uniqueness of the definition of the index
based on modal polygons presented in [9] is limited to convex polygons only (a
convex polygon is one which contains all the straight lines obtained by joining any
two points in its interior or on its boundary).

(2) Orientation of a modal polygon does not affect the value of the
non-proportionality index as defined in [9]. This is not desirable because a thin
and long convex polygon is associated with an approximately proportionally
damped system if the longer dimensions of this polygon orient themselves close
to a radial direction. To illustrate this point, consider two triangles ABC and
A'B'C' in Figure 6. The two triangles are congruent and thus they would have the
same value of non-proportionality index based on modal polygons of [9].
However, one notes that co-ordinates 1 and 2 (corresponding to points A and B
respectively) are, in fact, synchronous and the phase difference with the third
co-ordinate is small. In contrast, the primed system A'B'C' exhibits strong
non-proportionality which the area of the modal polygon fails to capture. As an
extreme case, if we changed the system parameters such that A and A' fall on BC
and B'C' respectively, both polygons would have zero area and hence would
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Figure 6. An example of two eigenvectors with distinctly different non-proportionality but having
identical area of the respective modal polygons.

predict absence of non-proportionality. In the case of system ABC, it is true (since
BC is a radial line), but in the case of B'C' it is not. This is most undesirable. The
basic problem with this index lies in the fact that areas of the modal polygons do
not always represent the phase information correctly.

(3) A two-degree-of-freedom system always has a ‘‘modal polygon’’ as a
straight line (and hence zero area thereof). A non-proportionality index based on
area of modal polygons then always predicts classical damping for a
two-degree-of-freedom system. This prediction is correct when the line
representing the modal polygon is radial but is incorrect when it is not. In the
author’s opinion this is a serious inconsistency in the definition of a
non-proportionality index.

(4) Modal polygons having out-of-phase (or nominally out-of-phase)
displacement phasors exhibit unreasonably large value of the area of the modal
polygons. This difficulty was tackled in reference [9] by rotating each of the
out-of-phase phasors through p, such that the modal polygons are confined to the
first and the fourth quadrants. This may lead to discontinuity of the
non-proportionality index with respect to changes in the system parameters. To
demonstrate this, consider a situation in which a given component of an
eigenvector is close to having negative imaginary such that the arrow
corresponding to this component points approximately in the direction −ja when
plotted on the complex plane. It can be seen that minor variations in system
parameters which may bring about a change in sign of the small real part of this
complex component of the eigenvector in question, will cause a jump in the value
of the area of the modal polygon, if the prescription of rotating out-of-phase or
nominally out-of-phase vectors through an angle p is followed.

5.1.     -

Guided by the shortcomings of the non-proportionality index based on modal
polygons, a non-proportionality index is defined in the spirit of the present
discussions of sections 3 and 4 as

h=zE/P, (11)
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where the quantities E and P are defined by equation (7). The non-dimensional
quantity h can be used as a measure of non-classicality and/or gyroscopic coupling.
This index can be interpreted as the ratio of the root mean square value of the
‘‘error’’ and the root mean square value of the ‘‘model’’. Error relates to the
non-classical effects whereas model pertains to proportional damping. Hence h

measures deviations from the proportional damping model.
Example 2. Sometimes modes may appear to be fairly complex but in fact they

can be rendered to a mode close to a real one by scaling. An extreme case of this
is the computed eigenvector for a classically damped system which may show a
significant phase but this phase stays the same for all the co-ordinates. Therefore,
it is not the absolute phase, but the relative spread of the phases for various
co-ordinates which determines how asynchronous a mode is. To illustrate this in
the light of the previous discussions, consider a three-degree-of-freedom system
whose governing equations of motion, are given by

&m1

0
0

0
m2

0

0
0
m3'8ẍ1

ẍ2

ẍ39+ &(c1 + c2)
−c2

0

− c2

(c2 + c3)
−c3

0
−c3

c3'8ẋ1

ẋ2

ẋ39
+ &(k1 + k2)

−k2

0

− k2

(k2 + k3)
−k3

0
−k3

k3'8x1

x2

x39= 80009.
For the data m1 =m2 =m3 =1, k1 =1, k2 =4, k3 =16, c1 =0·1, c2 =0·4,
c3 =1·76, the matrix of eigenvectors is calculated as

&−0·0057−0·0158j
0·0352+0·1210j

−0·0297−0·1057j

0·0947+0·3019j
−0·0292−0·0964j
−0·0503−0·1574j

0·4482−0·0337j
0·5271−0·0396j

−0·5370−0·0404j'.
These eigenvectors look genuinely complex but they represent approximately
synchronous motion. The distribution of the three eigenvectors is shown in
Figure 7. They align on the complex plane approximately in-phase and

Figure 7. Distribution of the three eigenvectors of the complex plane (see example 2). For clarity,
only the first three elements of each of the eigenvectors have been plotted; velocities lead the
corresponding displacements (the shown quantities) approximately by a phase p/2 and are omitted.
Note that the modes are nearly synchronous. Key: W, mode 1; w, mode 2; q, mode 3.
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out-of-phase. This can also be demonstrated algebraically by rescaling the
eigenvectors suitably since scaling a complex vector (using a complex scaling
factor) is equivalent to scaling of magnitude as well as rotating the phasor
diagram.

When the damping coefficient c3 is changed slightly to 1·6 from 1·76, the motion
is truly synchronous (the damping matrix is proportional to the stiffness matrix
in this case) although the computed eigenvector may appear to be complex. Indeed
the eigenvectors are real if they are scaled appropriately. Similar examples can be
constructed when the system is gyroscopic and/or damped.

The non-proportionality index h for the numerical values chosen in this example
(when the damping coefficient c3 =1·76), is calculated as {0·0077, 0·00344,
0·000005} for the three modes. Since all the three indices are very small compared
to unity, it may be concluded that the modes are nearly synchronous. For the case
of proportional damping (when c3 =1·6) all the three non-proportionality indices
are calculated as zero as expected. In comparison, for the data of Example 1, the
non-proportionality indices are given by {0·0198, 0·1714, 0·2354, 0·2381, 0·2076,
0·0699} for the six complex modes. In the context of the discussions of Example 1,
one observed that the first and the sixth damped modes are least non-proportional
(hence most synchronous), since the optimally synchronous modes closely
resemble the undamped natural modes. This is confirmed through the values of
non-proportionality indices calculated.

5.2.    - 

This index of non-proportionality is inspired by the one defined in reference [9].
It is based on area of right triangles of the kind shown in Figure 2 whose
orthogonal sides are pi and hi long. It may be noted that these triangles shrink to
a straight line and correspondingly the total area becomes zero when damping
becomes classical. Hence one defines a non-proportionality index for a particular
mode in question in terms of these areas as

r= s
n

r=1

Ar/Amax . (12)

Where Amax is given by

Amax =(1/4) s
n

r=1

l2r ,

where lr is the magnitude of the rth component of the eigenvector in question. Amax

defined here represents the maximum possible area that a right-angled triangle can
have whose hypotenuse is of length lr .

An index of non-proportionality proposed by this author in another paper [12]
is given in terms of elements of the off-diagonal entries of the modal
damping matrix. In contrast, the present definition is in terms of eigenvectors. It
is believed that the indices presented in this paper are more useful in assessing
non-proportionality from experimental data since, in this case, information about
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the system is more readily available in terms of eigenevectors as compared to the
information regarding system matrices. The non-proportionality index of
reference [12] on the other hand is more suitable for analytical and computational
purposes.

5.3.    -  h  r

Properties commonly shared by the two indices of non-proportionality, namely,
h and r are enumerated next.

Property 1: the non-proportionality indices lie in the range 0 to 1 i.e., 0E hE 1
and 0E rE 1.

Property 2: if synchronous motion exists (i.e., if the system is classically damped
or gyroscopic coupling can be removed using the same transform as the one which
uncouples inertia and stiffness terms), then indices of non-proportionality
presented in this paper are equal to zero.

Property 3: if the non-proportionality indices are equal to zero, synchronous
motion exists.

Property 4: for a given system, values of the non-proportionality indices are
unique (but different for different mode in general).

Property 5: values of the non-proportionality indices are invariant under scaling
of the eigenvectors (the scaling factor can be a complex number, in general).

Property 6: values of non-proportionality indices are continuous functions of
continuous changes in the system parameters.

Property 7: if the system parameters are changed in such a manner that
the phases between one phasor and all the rest increase (decrease) but the
relative phases of the remaining phasors stay unchanged, then values of the
non-proportionality indices increase (decrease). All the phases involved are
assumed to be less than p/2.

It is clear that the non-proportionality index of reference [9] based on the modal
polygons satisfies only properties 1 and 2. For the sake of brevity the formal proofs
of properties 1 through to 5 are emitted, since they are taken up in the earlier
discussions. Property 6 is easy to establish using the facts that (a) eigenvectors
(using a scaling consistently) are continuous functions of changes in the elements
of the matrices involved, and (b) the index of non-proportionality defined here is
a continuous function of the elements of the eigenvectors.

Property 7 is less obvious but can be easily proved by using the fact that a sine
is a monotonically increasing function whereas a cosine is a monotonically
decreasing function in the range 0 to p/2. The statement of property 7 must be
revised if the phases between the phasor whose sensitivity on the non-proportion-
ality indices is being studied makes angles in the range p/2 to p with the rest of
the phasors.

6. CONCLUSIONS

When classical normal modes do not exist, it is not possible to think in terms
of a deformed shape in damped free motion as a mode shape. The problem of
obtaining deformed configurations of the motion in these situations was
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addressed. Optimally synchronous modes were defined for the case of systems that
do not possess classical normal modes. The approach is based on the maximal
projection of the components of an eigenvector on a radial line. Numerical
examples were taken and it was observed that the optimal modes closely resemble
the shape of corresponding undamped modes when damping is light. Two
measures of non-proportionality indices were discussed. Certain ambiguities and
inconsistencies in the definition of a non-proportionality index available in the
literature were discussed.
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